(0) Obligation:

Clauses:

delete(X, tree(X, void, Right), Right).
delete(X, tree(X, Left, void), Left).
delete(X, tree(X, Left, Right), tree(Y, Left, Right1)) :- delmin(Right, Y, Right1).
delete(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), delete(X, Left, Left1)).
delete(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), delete(X, Right, Right1)).
delmin(tree(Y, void, Right), Y, Right).
delmin(tree(X, Left, X1), Y, tree(X, Left1, X2)) :- delmin(Left, Y, Left1).
less(0, s(X3)).
less(s(X), s(Y)) :- less(X, Y).

Query: delmin(a,a,g)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

delminA(tree(T6, void, T7), T6, T7).
delminA(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19)).
delminA(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) :- delminA(T50, T51, T48).
delminA(tree(T62, tree(T78, void, T79), T64), T78, tree(T62, T79, T67)).
delminA(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67)) :- delminA(T98, T99, T96).

Query: delminA(a,a,g)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
delminA_in: (f,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

delminA_in_aag(tree(T6, void, T7), T6, T7) → delminA_out_aag(tree(T6, void, T7), T6, T7)
delminA_in_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19)) → delminA_out_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19))
delminA_in_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_in_aag(T50, T51, T48))
delminA_in_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67)) → U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_in_aag(T98, T99, T96))
U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_out_aag(T98, T99, T96)) → delminA_out_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67))
U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_out_aag(T50, T51, T48)) → delminA_out_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19))

The argument filtering Pi contains the following mapping:
delminA_in_aag(x1, x2, x3)  =  delminA_in_aag(x3)
delminA_out_aag(x1, x2, x3)  =  delminA_out_aag
tree(x1, x2, x3)  =  tree(x2, x3)
U1_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U1_aag(x10)
U2_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U2_aag(x10)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

delminA_in_aag(tree(T6, void, T7), T6, T7) → delminA_out_aag(tree(T6, void, T7), T6, T7)
delminA_in_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19)) → delminA_out_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19))
delminA_in_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_in_aag(T50, T51, T48))
delminA_in_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67)) → U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_in_aag(T98, T99, T96))
U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_out_aag(T98, T99, T96)) → delminA_out_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67))
U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_out_aag(T50, T51, T48)) → delminA_out_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19))

The argument filtering Pi contains the following mapping:
delminA_in_aag(x1, x2, x3)  =  delminA_in_aag(x3)
delminA_out_aag(x1, x2, x3)  =  delminA_out_aag
tree(x1, x2, x3)  =  tree(x2, x3)
U1_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U1_aag(x10)
U2_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U2_aag(x10)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DELMINA_IN_AAG(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → U1_AAG(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_in_aag(T50, T51, T48))
DELMINA_IN_AAG(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → DELMINA_IN_AAG(T50, T51, T48)
DELMINA_IN_AAG(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67)) → U2_AAG(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_in_aag(T98, T99, T96))

The TRS R consists of the following rules:

delminA_in_aag(tree(T6, void, T7), T6, T7) → delminA_out_aag(tree(T6, void, T7), T6, T7)
delminA_in_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19)) → delminA_out_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19))
delminA_in_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_in_aag(T50, T51, T48))
delminA_in_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67)) → U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_in_aag(T98, T99, T96))
U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_out_aag(T98, T99, T96)) → delminA_out_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67))
U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_out_aag(T50, T51, T48)) → delminA_out_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19))

The argument filtering Pi contains the following mapping:
delminA_in_aag(x1, x2, x3)  =  delminA_in_aag(x3)
delminA_out_aag(x1, x2, x3)  =  delminA_out_aag
tree(x1, x2, x3)  =  tree(x2, x3)
U1_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U1_aag(x10)
U2_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U2_aag(x10)
DELMINA_IN_AAG(x1, x2, x3)  =  DELMINA_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U1_AAG(x10)
U2_AAG(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U2_AAG(x10)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DELMINA_IN_AAG(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → U1_AAG(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_in_aag(T50, T51, T48))
DELMINA_IN_AAG(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → DELMINA_IN_AAG(T50, T51, T48)
DELMINA_IN_AAG(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67)) → U2_AAG(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_in_aag(T98, T99, T96))

The TRS R consists of the following rules:

delminA_in_aag(tree(T6, void, T7), T6, T7) → delminA_out_aag(tree(T6, void, T7), T6, T7)
delminA_in_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19)) → delminA_out_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19))
delminA_in_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_in_aag(T50, T51, T48))
delminA_in_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67)) → U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_in_aag(T98, T99, T96))
U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_out_aag(T98, T99, T96)) → delminA_out_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67))
U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_out_aag(T50, T51, T48)) → delminA_out_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19))

The argument filtering Pi contains the following mapping:
delminA_in_aag(x1, x2, x3)  =  delminA_in_aag(x3)
delminA_out_aag(x1, x2, x3)  =  delminA_out_aag
tree(x1, x2, x3)  =  tree(x2, x3)
U1_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U1_aag(x10)
U2_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U2_aag(x10)
DELMINA_IN_AAG(x1, x2, x3)  =  DELMINA_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U1_AAG(x10)
U2_AAG(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U2_AAG(x10)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DELMINA_IN_AAG(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → DELMINA_IN_AAG(T50, T51, T48)

The TRS R consists of the following rules:

delminA_in_aag(tree(T6, void, T7), T6, T7) → delminA_out_aag(tree(T6, void, T7), T6, T7)
delminA_in_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19)) → delminA_out_aag(tree(T14, tree(T30, void, T31), T16), T30, tree(T14, T31, T19))
delminA_in_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_in_aag(T50, T51, T48))
delminA_in_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67)) → U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_in_aag(T98, T99, T96))
U2_aag(T62, T92, T98, T94, T64, T99, T96, T97, T67, delminA_out_aag(T98, T99, T96)) → delminA_out_aag(tree(T62, tree(T92, T98, T94), T64), T99, tree(T62, tree(T92, T96, T97), T67))
U1_aag(T14, T44, T50, T46, T16, T51, T48, T49, T19, delminA_out_aag(T50, T51, T48)) → delminA_out_aag(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19))

The argument filtering Pi contains the following mapping:
delminA_in_aag(x1, x2, x3)  =  delminA_in_aag(x3)
delminA_out_aag(x1, x2, x3)  =  delminA_out_aag
tree(x1, x2, x3)  =  tree(x2, x3)
U1_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U1_aag(x10)
U2_aag(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)  =  U2_aag(x10)
DELMINA_IN_AAG(x1, x2, x3)  =  DELMINA_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DELMINA_IN_AAG(tree(T14, tree(T44, T50, T46), T16), T51, tree(T14, tree(T44, T48, T49), T19)) → DELMINA_IN_AAG(T50, T51, T48)

R is empty.
The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x2, x3)
DELMINA_IN_AAG(x1, x2, x3)  =  DELMINA_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELMINA_IN_AAG(tree(tree(T48, T49), T19)) → DELMINA_IN_AAG(T48)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DELMINA_IN_AAG(tree(tree(T48, T49), T19)) → DELMINA_IN_AAG(T48)
    The graph contains the following edges 1 > 1

(14) YES